THE SET OF SEMI OCTAVE. II
Article Sidebar
Main Article Content
Abstract
Today, the theory of hypercomplex numbers is a rapidly developing field of mathematical knowledge due to its numerous applications in various branches of physics. For example, dual numbers allow us to model the physical space-time quite accurately mathematically, quaternions are used in electrodynamics, in the study of vortex motions, octaves also represent a mathematical model of a possible description of our reality [1-6]. In the article [7], by analogy with the work [8] of the Iranian mathematicians X. Mortazashl and M. Jafari, who gave the concept of a semi-quaternion, the definition of semi-octaves and operations on them is introduced, as well as some properties of these operations are established. This work continues the research started in [7]. Definitions of the norm of semi-octaves and linear equations over semi-octaves are introduced here, formulas for solving such equations are found. Analogs of the Euler and Moivre formulas, which originally took place for complex numbers, are also established for semi-octaves.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
A. KOZLOV, Polotsk State University
канд. физ.-мат. наук, доц.
References
Yaglom, I. M. (1963). Kompleksnye chisla i ikh primenenie v geometrii. Moscow: Fizmatlit. (In Russ.).
Pavlov, D. G., & Kokarev, S. S. (2010). Algebraicheskaya edinaya teoriya prostranstva-vremeni i materii na ploskosti dvoinoi peremennoi. Giperkompleksnye chisla v geometrii i fizike, 2(14), vol. 7, 11–37. (In Russ.).
Petrov, A. M. (2006). Kvaternionnoe predstavlenie vikhrevykh dvizhenii. Moscow: Kompaniya «SPUTNIK». (In Russ.).
Penrouz, R., & Rindler, V. (1987–1988). Spinory i prostranstvo–vremya [Spinors and space-time] (in 2 vol). Moscow: Mir. (In Russ.).
Kubyshkin, E. I. (2009). Nelineinaya algebra prostranstva-vremeni. Moscow: Knizhnyi dom «LIBROKOM». (In Russ.).
Kubyshkin, E. I. (2013). Oktavy i nash vos'mimernyi mir. Moscow: Knizhnyi dom «LIBROKOM». (In Russ.).
Kozlov, A. A. (2016). Mnozhestvo poluoktav. I [The set of semi octave. I]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (12), 75–85. (In Russ., abstr. in Engl.).
Mortazaasl, H., & Jafari, M. (2013). A study on semi-quaternions algebra in semi-Euclidean 4-space. Mathematical Sciences And Applications E-Notes, 1(2), 20–27.
Most read articles by the same author(s)
- A. KOZLOV, K. SURAVNEVA, N. ZHALEIKO, THE SIMILARITY TRANSFORMATION IN THE SET OF SEMI-QUATERNIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2019)
- A. KOZLOV, THE SET OF SEMI-OCTAVE. I, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2016)
- A. KOZLOV, ON THE PROPERTY OF UNIFORM COMPLETE CONTROLLABILITY FOR A LINEAR SYSTEM WITH LOCAL INTEGRABLE COEFFICIENTS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 2 (2024)