ABOUT RUPTURE ALONG THE CHARACTERISTICS OF THE FIRST AND SECOND PARTIAL DERIVATIVES OF SOLUTIONS OF THE GENERAL FACTORIZED ONE-DIMENSIONAL WAVE EQUATION IN A QUARTER OF THE PLANE

Main Article Content

F. LOMOVTSEV

Abstract

In this paper we study the smoothness of generalized solutions of one-dimensional wave equation (∂t - a2x + b2) (∂t + a1x + b1) u(x, t) = ƒ (x,t) and its right-hand side ƒ in the first quadrant. The purpose of the article – finding breaks the lines of the first and second partial derivatives of the generalized solutions of the wave equation in the case of the existence of these derivatives and the identification of necessary smoothness requirements on the right-hand side for the existence of classical solutions of this equation. The purpose of the article is achieved by propagating waves from the course of the equations of mathematical physics and methods of the theory of generalized functions. It is proved that the first partial derivatives of the continuous solutions of this equation can have a break only on pieces of its characteristics: x - a1t = C1, x + a2t = C2. The second partial derivatives of its continuously differentiable solutions can have a break only on the pieces of these characteristics and to pieces of the direct: x - √ a2a1 t = C3 , x + √ a2a1 t = C4 , Ci ∈ ℝ, i = 1, 4 . With these results it is established that any classical solution of the total factored linear inhomogeneous wave equation string contains a term of its unique (up to addition of classical solutions of the corresponding factored homogeneous equation) generalized solution which is twice continuously differentiable and is its classical solution in the first quadrant. This allowed us to bring the need for continuity of ƒ and the corresponding integral requirements for the smoothness on ƒ to the existence of classical solutions of this equation.

Article Details

How to Cite
LOMOVTSEV, F. (2016). ABOUT RUPTURE ALONG THE CHARACTERISTICS OF THE FIRST AND SECOND PARTIAL DERIVATIVES OF SOLUTIONS OF THE GENERAL FACTORIZED ONE-DIMENSIONAL WAVE EQUATION IN A QUARTER OF THE PLANE. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (12), 117-124. Retrieved from https://journals.psu.by/fundamental/article/view/4227
Author Biography

F. LOMOVTSEV, Belarusian State University, Minsk

д-р физ.-мат. наук, проф.

References

Тихонов, А. Н. Уравнения математической физики / А. Н. Тихонов, А. А. Самарский // М. : Наука, 2004. – 798 с.

Ломовцев, Ф. Е. Единственность частных решений линейных неоднородных дифференциальных уравнений, не содержащих нетривиальные частные решения их однородных уравнений / Ф. Е. Ломовцев // XII Белорусская математическая конференция : тез. докл., Минск, 5-10 сент. 2016 г. : в 5 ч. / Белорус. гос. ун-т ; ред. С. Г. Красовский. – Минск, 2016. – Ч. 2. – С. 71–72.

Ломовцев, Ф. Е. Классические решения неоднородного факторизованного гиперболического уравнения второго порядка в четверти плоскости при полунестационарной второй косой производной в граничном условии / Ф. Е. Ломовцев, Е. Н. Новиков // Весн. Вiцеб. дзярж. ун-та. – 2015. – № 4 (88). – С. 5–11.

Ломовцев, Ф. Е. Метод вспомогательных смешанных задач для полуограниченной струны / Ф. Е. Ломовцев // Шестые Богдановские чтения по обыкновенным дифференциальным уравнениям : матер. Междунар. мат. конф. Минск, 7–10 дек. 2015 г. : в 2 ч. / Белорус. гос. ун-т ; ред. С.Г. Красовский. – Минск, 2015. – Ч. 2. – С. 74–75.

Корзюк, В. И. Уравнения математической физики / В. И. Корзюк. – Минск : БГУ, 2011. – 459 с.

Корзюк, В. И. Классическое решение смешанных задач для одномерного волнового уравнения с негладкими условиями Коши / В. И. Корзюк, С. И. Пузырный // Весн. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2016. – № 2. – С. 22–31.

Владимиров, В. С. Обобщенные функции в математической физике / В. С. Владимиров. – М. : Наука, 1976. – 280 с.

Lions, J.-L. Equations diffé rentielles opé rationnelles et problèmes aux limites / J.-L. Lions // Berlin : Springer, 1961. – 292 p.