РАДИОЛОГИЧЕСКИЕ АСПЕКТЫ ВЫВОДА ЦИКЛОТРОНА ИЗ ЭКСПЛУАТАЦИИ

Main Article Content

A. KIYKO
S. VABISHCHEVICH
N. VABISHCHEVICH
D. BRINKEVICH

Abstract

In this paper, the radiological and economic issues of dismantling cyclotrons of various types, the accumulation of radionuclides in the details of the cyclotron itself, and the activation of the walls of the cyclotron bunker due to the capture of secondary neutrons are considered. As a result of (n,γ)-reactions on thermal neutrons, radionuclides 152Eu, 60Co, 46Sc are formed in the concrete of the cyclotron bunker with a half-life of 2,6 to 14 years and an activity of 0,1–11 kBq/kg. The maximum of their distribution usually lies at a depth of 10–15 cm. In the details of the cyclotron and the metal infrastructure of the bunker, the main radionuclides are 54Mn, 57Co, 65Zn. The analysis of the accumulation of long-lived radionuclides is of great importance for the design of new cyclotron facilities in order to ensure radiation safety and storage of radioactive waste and, as a result, to minimize the radiation exposure of personnel during the dismantling of the cyclotron.

Article Details

How to Cite
KIYKO, A., VABISHCHEVICH, S., VABISHCHEVICH, N., & BRINKEVICH, D. (2022). РАДИОЛОГИЧЕСКИЕ АСПЕКТЫ ВЫВОДА ЦИКЛОТРОНА ИЗ ЭКСПЛУАТАЦИИ. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (11), 59-64. https://doi.org/10.52928/2070-1624-2022-39-11-59-64
Section
Physics
Author Biographies

S. VABISHCHEVICH, Euphrosyne Polotskaya State University of Polotsk

канд. физ.-мат. наук, доц.

D. BRINKEVICH, Belarusian State University, Minsk

канд. физ.-мат. наук

References

Sunderland, J. J., Erdahl, C. E., Bender, B. R., Sensoy, L., & Watkins, G. L. (2012). Consideration, measurements and logistics associated with low-energy cyclotron decommissioning. 14th Intern. Workshop on Targetry and Target Chemistry. AIP Conf. Proc: V. 1509. (16–20). DOI: 10.1063/1.4773931.

Dodd, A. C., Shackelton, R. J., Carr, D. A., & Ismail, A. (2017). Activation of air and concrete in medical isotope production facilities. AIP Conference Proceedings: Vol. 1845. DOI: 10.1063/1.4983537.

Da-yeong Gwon, Yong-min Kim, Kyu-young Jeong, Nam-suk Jung, & Hee-seock Lee. (2017). Study on the regulation improvement of domestic cyclotron decommissioning through the questionnaires on the current cyclotron operation status. In Transactions of the Korean Nuclear Society Spring Meeting Jeju. http://www.kns.org/files/pre_paper/37/17S-309권다연.pdf.

Shiomi, T., Azeyanagi Y., Yamadera, A., & Nakamura, T. (2000). Measurements of residual radioactivity of machine elements and concrete on the cyclotron decommissioning. J. Nuclear Science Technology, (1), 357–361.

Sonck, M., Buls, N., Hermanne, A., & Eggermont, G. (2000). Radiological and economic impact of decommissioning charged particle accelerators. In IRPA-10: Proc. of the 10th intern. congress of the International Radiation Protection Association on harmonization of radiation, human life and the ecosystem (1v). Hiroshima, Japan.

Spinney, G. (1992) Thoughts on decommissioning the CERN synchrocyclotron. In Proc. of the 13th Intern. Conf. on Cyclotrons and their Applications (47–49). Vancouver, BC, Canada. https://accelconf.web.cern.ch/c92/papers/i-07.pdf.

Eberl, S., Eriksson, T., Svedberg, O., Norling, J., Henderson, D., Lam, P., … Fulham, M. (2012). Routine 18F- production with 180 μA to 200 μA target beam current on a GE PETtrace 800 Cyclotron. In AIP Conf. Proc.: Vol. 1509 (66–70). DOI: 10.1063/1.4773942.

Brinkevich, S. D., Brinkevich, D. I., & Kiiko, A. N. (2020). Activation radionuclides in the process of irradiation of a niobium target at the Cyclone 18/9 HC cyclotron. Physics of atomic nuclei, 12(83), 1732–1737.

Vabishchevich, S. A., Vabishchevich, N. V., Brinkevich, D. I., Brinkevich, S. D., & Nevzorov, D. I. (2019). Plenki piroliticheskogo grafita, obluchennogo ionami vodoroda N- [Pyrolytic Graphite Films Irradiation with H- Ions]. In V. V. Uglov (Eds.), Vzaimodeistvie izluchenii s tverdym telom [Interaction of Radiation with Solids] (43–45). Minsk: Publ. BSU. (In Russ., abstr. in Engl.).

Guarino, P., Rizzo, S., Tomarchio, E., & Greco, D. (2007). Gamma-ray spectrometric characterization of waste activated target components in a PET cyclotron. Cyclotrons and Their Applications–2007 (295–297). Giardini Naxos, Italy.

Brinkevich, D. I., Brinkevich, S. D., Baranovskii, O. A., Chizh, G. V., & Ivanyukovich, A. A. (2018). Dolgozhivushchie radionuklidy v proizvodstve 2-[18F]ftordezoksiglyukozy [Long-lived radionuclides in the production of 2-[18F]fluorodeoxyglucose]. Meditsinskaya fizika [Medical physics], 1(77), 80–88. (In Russ., abstr. in Engl.).

Krot, V. O., Tugay, O. V., Brinkevich, D. I., Brinkevich, S. D., Chizh, G. V., & Vabishchevich, S. A. (2018). Obrashchenie s vodnymi radioaktivnymi otkhodami pri proizvodstve radiofarmpreparatov na osnove 18F [Management of Aueous Radioactive Wastes in the Production of 18f-Labeled Radiopharmaceuticals]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (4), 128–134. (In Russ., abstr. in Engl.).

Brinkevich, D. I., Maliborskij, A. Ya., & Brinkevich, S. D. Aktivatsiya vody kontura okhlazhdeniya tsiklotrona Cyclone 18/9 HC pri narabotke 18F [Activation of cooling water for cyclotron Cyclone 18/9 HC at 18F production]. Yadernaya fizika i inzhiniring [Nuclear physics and engineering], 9(4), 404–410. DOI: 10.1134/S2079562918040024. (In Russ., abstr. in Engl.).

Kijko, A.N., Vabishchevich, S. A., Vabishchevich, N. V., & Brinkevich, D. I. (2022). Nakoplenie radionuklidov v smennykh detalyakh i vodnoi misheni tsiklotrona [Accumulation of radionuclides in replaceable parts and water target cyclotron]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], 4(38), 69–80. (In Russ., abstr. in Engl.).

Biegała, M., & Jakubowska, T. (2020). Levels of exposure to ionizing radiation among the personnel engaged in cyclotron operation and the personnel engaged in the production of radiopharmaceuticals, based on radiation monitoring system. Radiation Protection Dosimetry, 189(1), 56–62. DOI: 10.1093/rpd/ncaa012.

Bakhtiari, M., Mokhtari Oranj, L., Jung, N.-S., Lee, A., & Lee, H.-S. (2020). Estimation of neutron production yields from H2 18O as the 18F-production target bombarded by 18-MeV protons. Radiation Physics and Chemistry, 177(14), R. 109120. DOI: 10.1016/j.radphyschem.2020.109120.

Vichi, S. Zagni, F., Cicoria, G., Infantino, A., Riga, S., Zeller, M., … Mostacci, D. (2019). Activation studies of a PET cyclotron bunker. Radiation Physics and Chemistry, (161), 48–54. DOI: 10.1016/j.radphyschem.2019.04.001.

Nobuhara, F., Kuroyanagi, M., Masumoto, K., Nakamura, H., Toyoda, A. & Takahashi, K. (2017). Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility. EPJ Web of Conferences, (153), 04007. DOI: 10.1051/epjconf/201715304007.