SMOOTHNESS CRITERION FOR A PARTICULAR CLASSICAL SOLUTION OF AN INHOMOGENEOUS MODEL TELEGRAPH EQUATION IN THE FIRST QUARTER OF THE PLANE

Main Article Content

F. LOMOVTSEV

Abstract

https://journals.psu.by/public/site/images/admin-situ/c-11-2022-2.jpg

Article Details

How to Cite
LOMOVTSEV, F. (2022). SMOOTHNESS CRITERION FOR A PARTICULAR CLASSICAL SOLUTION OF AN INHOMOGENEOUS MODEL TELEGRAPH EQUATION IN THE FIRST QUARTER OF THE PLANE. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (11), 99-116. https://doi.org/10.52928/2070-1624-2022-39-11-99-116
Author Biography

F. LOMOVTSEV, Belarusian State University, Minsk

д-р физ.-мат. наук, проф.

References

Lomovtsev, F. E. (2017). Metod korrektirovki probnogo resheniya obshchego volnovogo uravneniya v pervoi chetverti ploskosti dlya minimal'noi gladkosti ego pravoi chasti [Correction method of test solutions of the general wave equation in the first quarter of the plane for the minimum smoothness of its right -hand side]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika [Journal of the Belarusian State University. Mathematics and informatics], (3), 38–52. (In Russ., abstr. in Engl.).

Lomovtsev, F. E. (2021). Pervaya smeshannaya zadacha dlya obshchego telegrafnogo uravneniya s peremennymi koeffitsiyentami na polupryamoy [The first mixed problem for the general telegraph equation with variable coefficients on the halfline]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika [Journal of the Belarusian State University. Mathematics and Informatics], (1), 18–38. DOI: 10.33581/2520-6508-2021-1-18-38. (In Russ., abstr. in Engl.).

Brish, N. I., & Yurchuk, N. I. (1971). Zadacha Gursa dlya abstraktnykh lineinykh differentsial'nykh uravnenii vtorogo poryadka [The Goursat problem for abstract second-order linear differential equations]. Differentsial'nye uravneniya [Differential Equations ], 7(6), 1017–1030. (In Russ.).

Sobolev, S. L. (1988). Nekotoryye primeneniya funktsional'nogo analiza v matematicheskoy fizike [Some applications of functional analysis in mathematical physics]. Moscow: Nauka. (In Russ.).

Tikhonov, A. N., & Samarskiy, A. A. (2004). Uravneniia matematicheskoi fiziki [The equations of mathematical physics]. Moscow: Nauka.

Lomovtsev, F. E., & Lysenko, V. V. (2019). Nekharakteristicheskaya smeshannaya zadacha dlya odnomernogo volnovogo uravneniya v pervoi chetverti ploskosti pri nestatsionarnykh granichnykh vtorykh proizvodnykh [A non-characteristic mixed problem for a one-dimensional wave equation in the first quarter of the plane with non-stationary boundary second derivatives]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta [Bulletin of the Vitebsk Dzyarzhaunaga University], 3(104), 5–17. (In Russ., abstr. in Engl.).