TO QUESTION ABOUT OF THE LUMPY MARGINAL PROBLEM DIRIHLE FOR WAVE EQUATION ON LENGTH
Article Sidebar
Main Article Content
Abstract
The Offered algorithm of the decision general initial-marginal problem of the lumpy wave equation on length with lumpy marginal condition. The Certain notion to marginal function. The Source problem with lumpy marginal condition is reduced to two simple modified problem, i.e. to problem with modified by right part and to problem with modified initial condition, but with uniform border condition. It Is Received decomposition to inaccuracy of the problem in most general type for optimum parameter of the approximations разностной schemes z = 1. The First double amount to inaccuracy complies with amount for problem with uniform marginal condition; the second single amount contains the composed proportional derived even order on time from marginal function. The Writtenned program on base of the built algorithm to reductions, are solved exactly and numerically three test examples, showing that marginal conditions Dirihle save all characteristic of the task with uniform marginal condition when use the modified conditions and marginal function.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
D. PASTUKHOV, Polotsk State University
канд. физ.-мат. наук, доц.
Y. PASTUKHOV, Polotsk State University
канд. физ.-мат. наук, доц.
References
Пастухов, Д.Ф. Оптимальный порядок аппроксимации разностной схемы волнового уравнения на отрезке / Д.Ф. Пастухов, Ю.Ф. Пастухов, Н.К. Волосова // Вестник Полоцкого университета. Серия С, Фундаментальные науки. – 2018. – № 4. – С. 167–186.
Пикулин, В.П. Практический курс по уравнениям математической физики : учеб. пособие / В.П. Пикулин, С.И. Похожаев. – М. : Наука,1995. – 224 с.
Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. – М. : Наука, 2008. – 729 с.
Вакуленко, С.П. Способы передачи QR-кода в компьютерной стеганографии / С.П. Вакуленко, Н.К. Волосова, Д.Ф. Пастухов // Мир транспорта. – 2018. – Т. 16, № 5 (78). – С. 14–25.
Пастухов, Д.Ф. Аппроксимация уравнения Пуассона на прямоугольнике повышенной точности / Д.Ф. Пастухов, Ю.Ф. Пастухов // Вестник Полоцкого университета. Серия С, Фундаментальные науки. – 2017. – № 12. – С. 62–77.
Волосова, Н.К. Преобразование Радона и краевой задачи для уравнения Пуассона в стеганографии / Н.К. Волосова // Тез. докл. Междунар. конф. по дифференциальным уравнениям и динамическим системам, Суздаль, 6-11 июля 2018 г. – Суздаль, 2018. – С. 61.
Вакуленко, С.П. К методу оценки состояния железнодорожного полотна / С.П. Вакуленко, К.А. Волосов, Н.К. Волосова // Мир транспорта. – 2016. – Т. 14, № 3 (64). – С. 20–35.
Вакуленко, С.П. К вопросу о нелинейных волнах в стержнях / С.П. Вакуленко А.К. Волосова, Н.К. Волосова // Мир транспорта. – 2018. – Т. 16, № 3 (76). – С. 6–17.
Козлов, А.А. Об управлении показателями Ляпунова двумерных линейных систем с локально интегрируемыми коэффициентами / А.А. Козлов // Дифференциальные уравнения. – 2008. – Т. 44, № 10. – С. 1319–1335.
Козлов, А.А. Об управлении показателями Ляпунова линейных систем в невырожденном случае / А.А. Козлов // Дифференциальные уравнения. – 2007. – Т. 43, № 5. – С. 621–627.
Пастухов, Ю.Ф. Группы преобразований сохраняющие вариационную задачу со старшими производными / Ю.Ф. Пастухов, Д.Ф. Пастухов // Вестник Полоцкого университета. Серия С, Фундаментальные науки. – 2018. – № 4. – С. 194–209.
Пастухов, Ю.Ф. Тензор обобщенной энергии / Д.Ф. Пастухов, Ю.Ф. Пастухов, С.В. Чернов // Вестник Полоцкого университета. Серия С, Фундаментальные науки. – 2017. – № 12. – С. 78–100.
Пастухов Ю.Ф. “ Необходимые условия в обратной вариационной задаче ”, Фундаментальная и прикладная математика, 7:1(2001), 285-288.
Свешников, А.Г. Лекции по математической физике / А.Г. Свешников, А.Н. Боголюбов, В.В. Кравцов. – М. : Изд-во МГУ, 1993. – 352 с.
Most read articles by the same author(s)
- R. BOHUSH, I. ZAKHARAVA, Y. PASTUKHOV, D. PASTUKHOV, N. NAUMOVICH, SIMULATION OF EARTH REMOTE SENSING DATA COMPRESSION BASED ON BLOCK ADAPTIVE QUANTIZATION, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2019)
- Y. PASTUKHOV, D. PASTUKHOV, LAGRANGIAN SECTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2018)
- Y. PASTUKHOV, D. PASTUKHOV, ABOUT INTEGRALS OF GENERALIZED ENERGY AT THE EXTREMALS OF THE EULER-LAGRANGE EQUATION SYSTEM, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2020)
- N. VOLOSOVA, K. VOLOSOV, A. VOLOSOVA, D. PASTUKHOV, Y. PASTUKHOV, ON FINITE METHODS FOR SOLVING THE POISSON EQUATION ON A RECTANGLE WITH THE DIRIHLET BOUNDARY CONDITIO, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2020)
- Y. PASTUKHOV, D. PASTUKHOV, PROPERTIES OF THE HAMILTON FUNCTION IN VARIATION TASKS WITH HIGHER DERIVATIVE DERIVATIVES, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2019)
- D. PASTUKHOV, Y. PASTUKHOV, N. VOLOSOVA, MINIMUM SCHEME OF THE DIFFERENCES FOR EQUATION OF THE POISSON ON BOX WITH SIXTH RATHER INACCURACY, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2019)
- N. VOLOSOVA, K. VOLOSOV, A. VOLOSOVA, D. PASTUKHOV, Y. PASTUKHOV, VECTOR ANALOGUE OF THE METHOD PROGONKI FOR DECISION THREE AND FIVE DIAGONAL MATRIX EQUATIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2019)
- D. PASTUKHOV, Y. PASTUKHOV, N. VOLOSOVA, OPTIMUM PARAMETER TO APROXIMATIONS RAZNOSTNOY SCHEMES OF THE WAVE EQUATION ON LENGTH, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2018)
- Y. PASTUKHOV, D. PASTUKHOV, GROUPS OF TRANSFORMATION CONSERVING VARIATIONAL PROBLEM WITH SENIOR DERIVATIVES, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2018)
- Y. PASTUKHOV, D. PASTUKHOV, HAMILTON INVERSE THEOREM, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2019)