CO-ORDINATION ORDER TO APROXIMATIONS DIFFERENTIAL AND BORDER OPERATOR IN MARGINAL PROBLEM AND EQUATIONS IN QUOTIENT DERIVED

Main Article Content

A. HERTZ
A. ZELENKEVICH
N. GUREVA
Y. PASTUHOV
D. PASTUHOV

Abstract

In the article by numerical methods is shown that numerical scheme approximates the problem mathematical physicists of parabolic type with 4 rather for cites an instance for step of the net provided that differential and border (the border condition of Neyman) operators are built with alike rather approximations. The brought rebels example, when border operator has a first order to approximations, but differential 4 orders, convergence decisions to exact decision of the differential problem has a no place. It is theoretically motivated convergence or decisions problems to decision of the differential problem in specified example. Formulas are received with approximation rather for border operator with uniform and lumpy condition of Neyman for unvaried equations in quotient derived elliptical, parabolic and hyperbolic types, as well as at approximations of the marginal problems.

Article Details

How to Cite
HERTZ, A., ZELENKEVICH, A., GUREVA, N., PASTUHOV, Y., & PASTUHOV, D. (2015). CO-ORDINATION ORDER TO APROXIMATIONS DIFFERENTIAL AND BORDER OPERATOR IN MARGINAL PROBLEM AND EQUATIONS IN QUOTIENT DERIVED. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (12), 102-109. Retrieved from https://journals.psu.by/fundamental/article/view/5638
Author Biographies

N. GUREVA, Polotsk State University

канд. физ.-мат. наук, доц.

Y. PASTUHOV, Polotsk State University

канд. физ.-мат. наук, доц.

D. PASTUHOV, Polotsk State University

канд. физ.-мат. наук, доц.

References

Бахвалов, Н.С. Численные методы в задачах и упражнениях / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. – М. : БИНОМ, Лаборатория знаний, 2010.

Пикулин, В.П. Практический курс по уравнениям математической физики / В.П. Пикулин, С.И. Похожаев. – М. : Наука, ФИЗМАТЛИТ, 1995.

Самарский, А.А. Численные методы решения обратных задач математической физики : учеб. пособие / А.А. Самарский, П.Н. Вабишевич. – М. : Изд-во ЛКИ, 2014. – 480 с.