TWO SPECIAL CASES OF TWO-DIMENSIONAL INTEGRAL G-TRANSFORMATION IN THE WEIGHTED SPACES OF SUMMABLE FUNCTIONS

Main Article Content

S. SITNIK
O. SKOROMNIK
M. PAPKOVICH

Abstract

Two-dimensional integral transformations with special functions of the same type in kernels are considered. Using the Mellin transformation technique, it is shown that they are special cases of a two-dimensional G-transformation. Based on the theory of the G-transformation, the properties of the considered integral transformations in the weighted spaces of integrable functions in the domain  are investigated. The results obtained generalize the data obtained for the corresponding one-dimensional analogues.

Article Details

How to Cite
SITNIK, S., SKOROMNIK, O., & PAPKOVICH, M. (2022). TWO SPECIAL CASES OF TWO-DIMENSIONAL INTEGRAL G-TRANSFORMATION IN THE WEIGHTED SPACES OF SUMMABLE FUNCTIONS. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (11), 117-123. https://doi.org/10.52928/2070-1624-2022-39-11-117-123
Author Biographies

S. SITNIK, Belgorod State National Research University "BelGU"

д-р физ.-мат. наук, доц.

O. SKOROMNIK, Euphrosyne Polotskaya State University of Polotsk

канд. физ.-мат. наук, доц.

References

Papkovich, M. V., & Skoromnik, O. V. (2019). Dvumernoe integral'noe preobrazovanie s G-funktsiei Meiera v yadre v prostranstve summiruemykh funktsii [Two-Dimentional Integral Transform With the Meijer G-Function in the Kernel in the Space of Summable Functions]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], 4(32), 131–136. (In Russ., abstr. in Engl.).

Papkovich, M. V., & Skoromnik O. V. (2020). Mnogomernoe integral'noe preobrazovanie s G-funktsiei Meiera v yadre v vesovykh prostranstvakh summiruemykh funktsii [Multidimensional integral transformation with Meijer's G-function in the kernel in the weighted spaces of summable functions]. In Z. Yu. Fazullin (Eds.) Ufimskaya osennyaya matematicheskaya shkola–2020: sb. tezisov [Ufa Autumn Mathematical School–2020] (142–144). – Ufa: Bashkir State University. (In Russ.)

Skoromnik, O. V., & Papkovich, M. V. (2022). Mnogomernye modifitsirovannye G-preobrazovaniya i integral'nye preobrazovaniya s gipergeometricheskoi funktsiei Gaussa v yadrakh v vesovykh prostranstvakh summiruemykh funktsii [Multidimensional modified G-transformations and integral transformations with hypergeometric Gauss functions in kernels in weight spaces of summed functions]. Vesnіk Vіtsebskaga dzyarzhaўnaga unіversіteta [Bulletin of VSU], 1(114), 11–25. (In Russ., abstr. in Engl.).

Sitnik S. M., Skoromnik, O. V., & Papkovich, M. V. (2022). Mnogomernye modifitsirovannye G- i H-preobrazovaniya i ikh chastnye sluchai [Multidimensional modified G- and H-transforms and their special cases]. In AMADE-2021: sb. trudov (104–116). Minsk: IVTs Minfina. (In Russ., abstr. in Engl.).

Sitnik, S. M., Skoromnik, O. V., & Shlapakov, S. A. (2019). Mnogomernoe obshchee integral'noe preobrazovanie so spetsial'nymi funktsiyami v yadre [Multidimensional general integral transformation with special functions in the kernel]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta [Bulletin of VSU], 3(104), 18–27. (In Russ., abstr. in Engl.).

Sitnik, S. M., & Skoromnik, O. V. (2020). One-dimensional and multi-dimensional integral transforms of Buschman- Erdelyi type with Legendre Functions in kernels. In Transmutation Operators and Applications. Trends in Mathematics (293–319). Cham, Switzerland: Birkhäuser Basel (Springer).

Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1987). Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order and some of their applications]. Minsk: Nauka i tekhnika.

Kilbas, A. A., & Saigo, M. H. (2004). H-Transforms. Theory and Applications. London [etc.]: Chapman and Hall. CRC Press.

Sitnik, S. M., Skoromnik, O. V., & Shlapakov, S. A. (2022). Multi-dimensional generalized integral transform in the weighted spaces of summable functions. Lobachevskii J. of Mathematics, 43(6), 1170–1178.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (Ed.). (2006). Theory and applications of fractional differential equations. North–Holland Mathematics Studies (Vol. 204). Amsterdam: Elsevier.xv.

Most read articles by the same author(s)