SOLUTION OF ONE CLASS OF MULTI-DIMENSIONAL INTEGRAL EQUATIONS OF THE FIRST KIND WITH MITTAG-LEFFLER FUNCTION IN KERNELS

Main Article Content

S. SITNIK
O. SKOROMNIK
M. PAPKOVICH

Abstract

One class of multidimensional integral equations of the first kind with Mittag-Leffler function in kernels over a bounded pyramidal domain of a special form is considered. Following the technique of Ya. Tamarkin, explicit formulas for the solution of the considered multidimensional integral equations are derived. Necessary and sufficient conditions for the solvability of such equations in spaces of summable functions are established.

Article Details

How to Cite
SITNIK, S., SKOROMNIK, O., & PAPKOVICH, M. (2025). SOLUTION OF ONE CLASS OF MULTI-DIMENSIONAL INTEGRAL EQUATIONS OF THE FIRST KIND WITH MITTAG-LEFFLER FUNCTION IN KERNELS. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (1), 81-87. https://doi.org/10.52928/2070-1624-2025-44-1-81-87
Author Biographies

S. SITNIK, The National Research University «Belgorod State University» (BelSU), Russia

д-р физ.-мат. наук, проф.

O. SKOROMNIK, Euphrosyne Polotskaya State University of Polotsk

канд. физ.-мат. наук, доц.

References

Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1987). Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order and some of their applications]. Minsk: Nauka i tekhnika. (In Russ.).

Skoromnik O. V. (2019). Integral'nye preobrazovanija s funkcijami Gaussa i Lezhandra v jadrah i integral'nye uravnenija pervogo roda. Novopolock: PSU. (In Russ.).

Repin, O. A. (1992). Kraevye zadachi so sdvigom dlya uravnenii giperbolicheskogo i smeshannogo tipov. Saratov: izd-vo Saratovskogo un-ta. (In Russ.).

Kilbas, A. A., Saigo, M., & Takushima, H. (1995). On integrable solution of a multidimensional Abel-type integral equation. Fukuoka Univ. Sci. Rep., 25(1), 1–9.

Mikhlin, S. G. (1959). Lektsii po integral'nym uravneniyam. Moscow: Fizmatgiz. (In Russ.).

Preobrazhenskii, N. G. (1978). Abeleva inversiya v fizicheskikh zadachakh: Inversiya Abelya i ee obobshcheniya. Novosibirsk: In-t. teor. i prikl. mekhaniki SO AN SSSR. (In Russ.).

Fedosov, V. P. (1978). O nekotorykh obobshchennykh uravneniyakh Abelya. Novosibirsk: In-t teor. i prikl. mekhaniki SO AN SSSR. (In Russ.).

Kilbas, A. A., Raina, R. K., Saigo, M., & Srivastava, G. M. (1995). Reshenie mnogomernykh gipergeometricheskikh uravnenii tipa Abelya. Doklady NAN Belarusi, 43(2), 23–26. (In Russ.).

Raina, K. L., Srivastava, Т. M., Kilbas, A. A., & Saigo, M. (2001). Solvability of some Abel-type integral equations involving the Gauss hypergeometry Function as kernels in the space of summable functions. ANZIAM J., 43(2), 291–320.

Kilbas, A. A., & Skoromnik, O. V. (2009). Solution of a multidimensional integral equation of the first kind with the Legendre function in the kernel over a pyramidal domain. Doklady Mathematics, 80(3), 847–851. DOI: 10.1134/S1064562409060179.

Kilbas, A. A., & Skoromnik, O. V. (2009). Reshenie mnogomernykh integral'nykh uravnenii tipa Abelya s gipergeometricheskoi funktsiei Gaussa v yadrakh po piramidal'noi oblasti [The solution of multidimensional integral Abel type equations with the Gauss hypergeometric function in kernels over pyramidal domain]. Trudy In-ta matematiki NAN Belarusi [Proceedings of the Institute of Mathematics of the National Academy of Sciences of Belarus], 17(1), 71–78. (In Russ., abstr. in Engl.).

Skoromnik, O. V. (2011). Reshenie mnogomernykh gipergeometricheskikh integral'nykh uravnenii tipa Abelya [Solution of a multidimensional hypergeometric abel-type integral equations]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (4), 64–70. (In Russ., abstr. in Engl.).

Skoromnik, O. V., & Matelenok, A. P. (2011). Reshenie mnogomernykh integral'nykh uravnenii tipa Abelya s gipergeometricheskoi funktsiei Gaussa v yadrakh po piramidal'noi oblasti [Solution of multidimensional Abel-type integral equations with the Gauss hypergeometric function in the kernels over pyramidal domain]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta, 2(62), 22–27. (In Russ., abstr. in Engl.).

Skoromnik, O. V., & Shlapakov, S. A. (2014). Reshenie mnogomernogo integral'nogo uravneniya pervogo roda s funktsiei Kummera v yadre po piramidal'noi oblasti [Solution of a Multidimensional Integral Equation of the First Kind with Kummer Function in the Kernel over a Pyramidal Domain]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta, 1(79), 12–17. (In Russ., abstr. in Engl.).

Skoromnik, O. V., & Shlapakov, S. A. (2018). Reshenie mnogomernogo integral'nogo uravneniya tipa Abelya s funktsiei Besselya–Klifforda v yadre po piramidal'noi oblasti [Solution of a multidimensional integral abel type equation with the Bessel– Klifford function in the kernel over a pyramidal domain]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta, 2(99), 5–13. (In Russ., abstr. in Engl.).

Papkovich, M. V., Skoromnik, O. V. (2021). Reshenie mnogomernogo integral'nogo uravneniya tipa Abelya s funktsiei giperbolicheskogo sinusa v yadre po piramidal'noi oblasti. In A. M. Magomedov et al. (Eds.), Aktual'nye problemy matematiki i informatsionnykh tekhnologii (124–127). Makhachkala: DGU. (In Russ.).

Papkovich, M. V., Skoromnik, O. V., & Shlapakov, S. A. (2021). Reshenie odnogo klassa mnogomernykh integral'nykh uravnenii pervogo roda s funktsiei giperbolicheskogo sinusa v yadrakh [Solution of one class of multi-dimensional integral equations of the first kind with hyperbolic sine function in kernels]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (12), 77–83.

Corenflo, R., Kilbas, A., Mainardi, F., & Rogosin, S. (2020). Mittag-Leffler Functions, Related Topics and Applications (2nd ed.). Berlin: Springer Verlag. URL: link.springer.com›book/10.1007/978-3-662-61550-8.

Most read articles by the same author(s)

1 2 > >>