SOLUTION OF ONE CLASS OF MULTI-DIMENSIONAL INTEGRAL EQUATIONS OF THE FIRST KIND WITH MITTAG-LEFFLER FUNCTION IN KERNELS
Article Sidebar
Main Article Content
Abstract
One class of multidimensional integral equations of the first kind with Mittag-Leffler function in kernels over a bounded pyramidal domain of a special form is considered. Following the technique of Ya. Tamarkin, explicit formulas for the solution of the considered multidimensional integral equations are derived. Necessary and sufficient conditions for the solvability of such equations in spaces of summable functions are established.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
S. SITNIK, The National Research University «Belgorod State University» (BelSU), Russia
д-р физ.-мат. наук, проф.
O. SKOROMNIK, Euphrosyne Polotskaya State University of Polotsk
канд. физ.-мат. наук, доц.
References
Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1987). Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order and some of their applications]. Minsk: Nauka i tekhnika. (In Russ.).
Skoromnik O. V. (2019). Integral'nye preobrazovanija s funkcijami Gaussa i Lezhandra v jadrah i integral'nye uravnenija pervogo roda. Novopolock: PSU. (In Russ.).
Repin, O. A. (1992). Kraevye zadachi so sdvigom dlya uravnenii giperbolicheskogo i smeshannogo tipov. Saratov: izd-vo Saratovskogo un-ta. (In Russ.).
Kilbas, A. A., Saigo, M., & Takushima, H. (1995). On integrable solution of a multidimensional Abel-type integral equation. Fukuoka Univ. Sci. Rep., 25(1), 1–9.
Mikhlin, S. G. (1959). Lektsii po integral'nym uravneniyam. Moscow: Fizmatgiz. (In Russ.).
Preobrazhenskii, N. G. (1978). Abeleva inversiya v fizicheskikh zadachakh: Inversiya Abelya i ee obobshcheniya. Novosibirsk: In-t. teor. i prikl. mekhaniki SO AN SSSR. (In Russ.).
Fedosov, V. P. (1978). O nekotorykh obobshchennykh uravneniyakh Abelya. Novosibirsk: In-t teor. i prikl. mekhaniki SO AN SSSR. (In Russ.).
Kilbas, A. A., Raina, R. K., Saigo, M., & Srivastava, G. M. (1995). Reshenie mnogomernykh gipergeometricheskikh uravnenii tipa Abelya. Doklady NAN Belarusi, 43(2), 23–26. (In Russ.).
Raina, K. L., Srivastava, Т. M., Kilbas, A. A., & Saigo, M. (2001). Solvability of some Abel-type integral equations involving the Gauss hypergeometry Function as kernels in the space of summable functions. ANZIAM J., 43(2), 291–320.
Kilbas, A. A., & Skoromnik, O. V. (2009). Solution of a multidimensional integral equation of the first kind with the Legendre function in the kernel over a pyramidal domain. Doklady Mathematics, 80(3), 847–851. DOI: 10.1134/S1064562409060179.
Kilbas, A. A., & Skoromnik, O. V. (2009). Reshenie mnogomernykh integral'nykh uravnenii tipa Abelya s gipergeometricheskoi funktsiei Gaussa v yadrakh po piramidal'noi oblasti [The solution of multidimensional integral Abel type equations with the Gauss hypergeometric function in kernels over pyramidal domain]. Trudy In-ta matematiki NAN Belarusi [Proceedings of the Institute of Mathematics of the National Academy of Sciences of Belarus], 17(1), 71–78. (In Russ., abstr. in Engl.).
Skoromnik, O. V. (2011). Reshenie mnogomernykh gipergeometricheskikh integral'nykh uravnenii tipa Abelya [Solution of a multidimensional hypergeometric abel-type integral equations]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (4), 64–70. (In Russ., abstr. in Engl.).
Skoromnik, O. V., & Matelenok, A. P. (2011). Reshenie mnogomernykh integral'nykh uravnenii tipa Abelya s gipergeometricheskoi funktsiei Gaussa v yadrakh po piramidal'noi oblasti [Solution of multidimensional Abel-type integral equations with the Gauss hypergeometric function in the kernels over pyramidal domain]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta, 2(62), 22–27. (In Russ., abstr. in Engl.).
Skoromnik, O. V., & Shlapakov, S. A. (2014). Reshenie mnogomernogo integral'nogo uravneniya pervogo roda s funktsiei Kummera v yadre po piramidal'noi oblasti [Solution of a Multidimensional Integral Equation of the First Kind with Kummer Function in the Kernel over a Pyramidal Domain]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta, 1(79), 12–17. (In Russ., abstr. in Engl.).
Skoromnik, O. V., & Shlapakov, S. A. (2018). Reshenie mnogomernogo integral'nogo uravneniya tipa Abelya s funktsiei Besselya–Klifforda v yadre po piramidal'noi oblasti [Solution of a multidimensional integral abel type equation with the Bessel– Klifford function in the kernel over a pyramidal domain]. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta, 2(99), 5–13. (In Russ., abstr. in Engl.).
Papkovich, M. V., Skoromnik, O. V. (2021). Reshenie mnogomernogo integral'nogo uravneniya tipa Abelya s funktsiei giperbolicheskogo sinusa v yadre po piramidal'noi oblasti. In A. M. Magomedov et al. (Eds.), Aktual'nye problemy matematiki i informatsionnykh tekhnologii (124–127). Makhachkala: DGU. (In Russ.).
Papkovich, M. V., Skoromnik, O. V., & Shlapakov, S. A. (2021). Reshenie odnogo klassa mnogomernykh integral'nykh uravnenii pervogo roda s funktsiei giperbolicheskogo sinusa v yadrakh [Solution of one class of multi-dimensional integral equations of the first kind with hyperbolic sine function in kernels]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (12), 77–83.
Corenflo, R., Kilbas, A., Mainardi, F., & Rogosin, S. (2020). Mittag-Leffler Functions, Related Topics and Applications (2nd ed.). Berlin: Springer Verlag. URL: link.springer.com›book/10.1007/978-3-662-61550-8.
Most read articles by the same author(s)
- M. PAPKOVICH, O. SKOROMNIK, S. SHLAPAKOV, SOLUTION OF ONE CLASS OF MULTI-DIMENSIONAL INTEGRAL EQUATIONS OF THE FIRST KIND WITH HYPERBOLIC SINE FUNCTION IN KERNELS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2021)
- S. SITNIK, O. SKOROMNIK, Y. ARKHIPAVETS, ONE GENERALIZED H-TRANSFORMATION IN WEIGHT SPACES OF INTEGRATED FUNCTIONS ON A SEMI-AXIS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2021)
- S. SITNIK, O. SKOROMNIK, K. VASILEVICH, TWO-DIMENSIONAL INTEGRAL TRANSFORMATIONS WITH KUMMER FUNCTION AND HYPERGEOMETRIC GAUSSIAN FUNCTION IN KERNELS AS SPECIAL CASES OF TWO-DIMENSIONAL INTEGRAL G-TRANSFORMATION, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 1 (2023)
- S. SITNIK, O. SKOROMNIK, M. PAPKOVICH, TWO-DIMENSIONAL INTEGRAL H-TRANSFORM IN WEIGHTED SPACES OF SUMMABLE FUNCTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 2 (2023)
- S. SITNIK, O. SKOROMNIK, M. PAPKOVICH, TWO SPECIAL CASES OF TWO-DIMENSIONAL INTEGRAL G-TRANSFORMATION IN THE WEIGHTED SPACES OF SUMMABLE FUNCTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 11 (2022)
- PAPKOVICH PAPKOVICH, O. SKOROMNIK, TWO-DIMENTIONAL INTEGRAL TRANSFORM WITH THE MEIJER G-FUNCTION IN THE KERNEL IN THE SPACE OF SUMMABLE FUNCTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2019)
- O. SKOROMNIK, TWO-DIMENTIONAL INTEGRAL TRANSFORM WITH THE H-FUNCTION IN THE KERNEL IN THE SPACE OF SUMMABLE FUNCTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2018)
- O. SKOROMNIK, T. ALEKSANDROVICH, SOLUTION OF A MULTIDIMENSIONAL INTEGRAL EQUATION OF THE FIRST KIND WITH THE BESSEL – KLIFFORD FUNCTION IN THE KERNEL OVER A PYRAMIDAL DOMAIN, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2015)
- S. SITNIK, O. SKOROMNIK, A. KUROKHTINA, INTEGRAL TRANSFORMATION WITH THE MITTAG–LEFFLER FUNCTION IN SPACES OF LEBESGUE-MEASURABLE FUNCTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 2 (2024)
- O. SKOROMNIK, INTEGRAL TRANSFORMS WITH THE CONFLUENT HYPERDEOMETRIC FUNCTION OF KUMMER AND THE CUT BESSEL FUNCTION IN THE KERNELS AND INTEGRAL EQUATIONS OF THE FIRST KIND IN THE SPACE OF SUMMABLE FUNCTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2016)