ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ С ФУНКЦИЕЙ МИТТАГ – ЛЕФФЛЕРА В ПРОСТРАНСТВАХ ИЗМЕРИМЫХ ПО ЛЕБЕГУ ФУНКЦИЙ
##plugins.themes.bootstrap3.article.sidebar##
##plugins.themes.bootstrap3.article.main##
Аннотация
Рассматривается одно интегральное преобразование со специальной функцией Миттаг – Леффлера в ядре. Применяя технику преобразования Меллина, показываем, что оно является частным случаем одномерного H-преобразования. На основании теории H-преобразования в работе исследованы свойства рассматриваемого интегрального преобразования в пространствах интегрируемых функций с весом на полуоси.
##plugins.themes.bootstrap3.article.details##
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
С. М. СИТНИК, Белгородский государственный национальный исследовательский университет, Россия
д-р физ.-мат. наук, доц.
О. В. СКОРОМНИК, Полоцкий государственный университет имени Евфросинии Полоцкой
канд. физ.-мат. наук, доц.
Библиографические ссылки
Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1987). Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order and some of their applications]. Minsk: Nauka i tekhnika. (In Russ.).
Paneva-Konovska, J. (2017). From Bessel to multi-index Mittag-Leffler functions: enumerable families, series in them and convergence. World Scientific.
Gorenflo, R., Kilbas, A. A, Mainardi, F., & Rogosin, S. (2020). Mittag-Leffler Functions, Related Topics and Applications. Springer. DOI: 10.1007/978-3-662-61550-8.
Kilbas, A. A., & Saigo, M. H. (2004). H-Transforms. Theory and Applications. London [etc.]: Chapman and Hall. CRC Press.
Rooney, P. G. (1983). On integral transformations with G-function kernels. Proc. Royal Soc. Edinburgh. Sect. A., 93, 265–297.
Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (Ed.). (2006). Theory and applications of fractional differential equations. North–Holland Mathematics Studies (Vol. 204). Amsterdam: Elsevier.xv.
Skoromnik, O. V. (2019). Integral'nye preobrazovaniya s funktsiyami Gaussa i Lezhandra v yadrakh i integral'nye uravneniya pervogo roda. – Novopolock: PGU. (In Russ.).
Рекомендуемые статьи автора (авторов)
- М. В. ПАПКОВИЧ, О. В. СКОРОМНИК, С. А. ШЛАПАКОВ, РЕШЕНИЕ ОДНОГО КЛАССА МНОГОМЕРНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО РОДА С ФУНКЦИЕЙ ГИПЕРБОЛИЧЕСКОГО СИНУСА В ЯДРАХ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 12 (2021)
- С. М. СИТНИК, О. В. СКОРОМНИК, Е. Н. АРХИПОВЕЦ, ОДНО ОБОБЩЕННОЕ H-ПРЕОБРАЗОВАНИЕ В ВЕСОВЫХ ПРОСТРАНСТВАХ ИНТЕГРИРУЕМЫХ ФУНКЦИЙ НА ПОЛУОСИ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 12 (2021)
- С. М. СИТНИК, О. В. СКОРОМНИК, К. А. ВАСИЛЕВИЧ, ДВУМЕРНЫЕ ИНТЕГРАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ С ФУНКЦИЕЙ КУММЕРА И ГИПЕРГЕОМЕТРИЧЕСКОЙ ФУНКЦИЕЙ ГАУССА В ЯДРАХ КАК ЧАСТНЫЕ СЛУЧАИ ДВУМЕРНОГО ИНТЕГРАЛЬНОГО G-ПРЕОБРАЗОВАНИЯ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 1 (2023)
- С. М. СИТНИК, О. В. СКОРОМНИК, М. В. ПАПКОВИЧ, ДВУМЕРНОЕ ИНТЕГРАЛЬНОЕ H-ПРЕОБРАЗОВАНИЕ В ВЕСОВЫХ ПРОСТРАНСТВАХ СУММИРУЕМЫХ ФУНКЦИЙ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 2 (2023)
- С. М. СИТНИК, О. В. СКОРОМНИК, М. В. ПАПКОВИЧ, ДВА ЧАСТНЫХ СЛУЧАЯ ДВУМЕРНОГО ИНТЕГРАЛЬНОГО G-ПРЕОБРАЗОВАНИЯ В ВЕСОВЫХ ПРОСТРАНСТВАХ СУММИРУЕМЫХ ФУНКЦИЙ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 11 (2022)
- М. В. ПАПКОВИЧ, О. В. СКОРОМНИК, ДВУМЕРНОЕ ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ С G-ФУНКЦИЕЙ МЕЙЕРА В ЯДРЕ В ПРОСТРАНСТВЕ СУММИРУЕМЫХ ФУНКЦИЙ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 4 (2019)
- О. В. СКОРОМНИК, ДВУМЕРНОЕ ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ С МОДИФИЦИРОВАННОЙ H-ФУНКЦИЕЙ В ПРОСТРАНСТВЕ СУММИРУЕМЫХ ФУНКЦИЙ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 4 (2018)
- О. В. СКОРОМНИК, ДВУМЕРНОЕ ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ С ВЫРОЖДЕННОЙ ГИПЕРГЕОМЕТРИЧЕСКОЙ ФУНКЦИЕЙ КУММЕРА В ЯДРЕ И ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ПЕРВОГО РОДА В ПРОСТРАНСТВЕ СУММИРУЕМЫХ ФУНКЦИЙ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 4 (2017)
- О. В. СКОРОМНИК, Т. А. АЛЕКСАНДРОВИЧ, РЕШЕНИЕ МНОГОМЕРНОГО ИНТЕГРАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО РОДА С ФУНКЦИЕЙ БЕССЕЛЯ – КЛИФФОРДА В ЯДРЕ ПО ПИРАМИДАЛЬНОЙ ОБЛАСТИ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 4 (2015)
- О. В. СКОРОМНИК, ИНТЕГРАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ С ВЫРОЖДЕННОЙ ГИПЕРГЕОМЕТРИЧЕСКОЙ ФУНКЦИЕЙ КУММЕРА И НОРМИРОВАННОЙ ФУНКЦИЕЙ БЕССЕЛЯ В ЯДРАХ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО РОДА В ПРОСТРАНСТВЕ СУММИРУЕМЫХ ФУНКЦИЙ, Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки: № 12 (2016)